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The stability of charged solitons described by the relativistic complex scalar 
field is investigated by the direct Lyapunov method. It is shown that the 
stability of pulson-type solitons can only be conditional. Some necessary and 
sufficient conditions for the stability of stationary solitons with fixed charge are 
established. Several examples are considered. 

In recent years the interest towards regular or particlelike solutions to 
nonlinear field equations has increased considerably. These solutions, 
called solitons, find numerous applications in plasma physics, nonlinear 
optics, the theory of elementary particles etc. (Makhankov, 1978; Faddeev 
and Korepin, 1978). In this connection, very often, the stability of solitons 
with respect to small initial perturbations acquires special importance. 
Although the methods for the investigation of stability are well developed 
(Zubov, 1957), their practical application is often connected with serious 
mathematical difficulties. 

In the present paper some conditions for the stability of charged 
solitons described by the complex scalar field ~p(t,x) : R 1 • R 3--~C1, satisfy- 
ing the natural boundary condition limr~l~oo~(x)=0, x----(t,x), are estab- 
lished. 

Let the Lagrangian density have the Lorentz-invariant form: 

L = - � 8 9  p = - a.~p*~ ~p; s = [cp[ 2 (1) 

and the corresponding field equations have the stationary regular solution 

%(x)  = u(x)exp( - ioJt);  u* = u; ~0= const (2) 

describing the charged soliton at rest. If U denotes the set of functions 
obtained from % by means of 3-translations, 3-rotations, and gauge 
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transformations Cpo-->%exp(ia),a=const, then, by definition, the function 
~(x) ~ U describes the perturbed soliton. 

Let ep(x):--ep(x)exp(i~t). Following the papers by Movchan (1960) and 
Slobodkin (1964), we introduce the metrics (distances) P014 ~ and p[4] for 
the characterization of the initial perturbation 4~ - u(x) and the 
current perturbation 4~  ~(x) - u(x), respectively. Putting 4 = 41 + i42, 4" = 4i, 
and denoting the norms in L2(R 3) and Sobolev space W~(R 3) by II" II and 
II" II' respectively, we choose the metrics Po, P in the form 

2 2 

= " Y.  114ill (li ,~176 p[4] 

where ~i-- a04i" 
Definition. The regular solution % is said to be stable in the 

Lyapunov sense with respect to the metrics Oo, O, if for each e > 0 there 
exists a number 8(e)> 0 such that from 0014 0] <8 it follows that 014] <e for 
any t > 0 .  

Now let us consider a lemma of variational calculus that will be useful 
afterwards. Let the functional 

V[q,]= f d3xv(eo, Veo) 

be defined in the class of sectionally smooth functions qS(x):R3--~R n, 
~ ( ~ ) = 0 .  Let u(a;x)  be the family of its extremal fields given by the 
parameters a = (% }. 

Lemma. If there exist the constants Ci, not all equal to zero, such 
that f--~iCi(Ou/Oai)~=o=O on some surface S separating in R 3 a 
domain f~ of nonzero measure, then 62V is sign changing in the 
neighborhood of u(0; x). 

Proof. Consider the perturbation 8d? such that 6~=0  for x E~2 and 
8~---f for xEf~. Then due to the properties of extremal fields 62V[d~]-~0. 
However, the perturbation 8~ is not the extremal point of the functional 
82V, as it violates the Weierstrass-Erdmann matching condition. Hence, 
8 2V is sign changing. 

Sometimes the regular solutions 

rpo= u(t,x)exp[ - @(t) ], u* -- u 

which are more general than (2), are considered. 

(3) 
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Theorem 1. The regular solutions (3) are unstable, in the Ly- 
apunov sense, in any model (1) (Rybakov, 1978). 

Proof According to the general theorem of stability (Zubov, 1957; 
Movchan, 1960) the motion ~0 of the autonomous dynamical system (I) is 
stable with respect to the metrics O0, O, if and only if in some neighborhood 
D of % there exists the Lyapunov's functional V[cp] such that (i) it does 
not increase along the trajectories of the system, (ii) it is continuous with 
respect to the metric O0, and (iii) it is positive definite with respect to the 
metric O. Thus if we suppose % to be stable, then there must exist a 
positive definite functional V[cp] for which % is the extremal field. Since 
the model (1) is invariant under 3-translations x---~x+a, a=const ,  then 
% ( t , x + a )  is also the extremal field for V[~]. However, the equation 
axu = 0 can be satisfied on some surface S because u(x) is regular and 
u(t, oo)= 0. Hence, according to the lemma 82V is sign changing, which 
contradicts the stability of % and proves the theorem. 

From Theorem 1 it follows that only conditional stability of the 
regular solutions (2) and (3) can be achieved. One of the simplest condi- 
tions that can be imposed on the initial perturbations ~0 is the condition of 
charge fixation: 

o_= �89 f a3x r ( *a0w- 00w'w) = 0[ w0]-=O0 (4) 

Following (Makhankov, 1978), the stability under the condition (4) will be 
called Q stability. 

Theorem 2. Regular nodal solutions (3) are Q unstable in any 
model (1). 

Proof As u( t ,x)= 0 on the nodal surface, all the conditions of the 
lemma are fulfilled for the family of extremal fields %exp(ia) allowed by 
the model (1). So the proof of Theorem 1 can be extended to this case too, 
the condition (4) being satisfied by assuming ~o__~0=2 0 and [[~o1[ << [[~2o[j. 

Now let us establish some sufficient conditions for Q stability of the 
nonnodal solutions (2) by choosing the Lyapunov's functional V in the 
foran 

V = E - w Q  (5) 

where E is the field energy. It is clear that the fields (2) are extremal ones 
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for the functional (5). The second variation of V can be written as 

2 

62V---(~,,Fv~1)+(~2,(Fp-2FppwZs)~2)+ ~, (r (6) 
i = l  

where (. , .) denotes the scalar product  in L2(R 3) and the Hermitian 
operators/~i, i-- 1,2, have the form 

/~1=/~2-2div[ F~p V u(V uV) ] + div( Fppr 2- rps)V s + 2s( F~- 2W2Fp~ +~ 4F~p) 

/~2 = - divFp V - o~2Fp + F~ 

It is clear from (6) that if ~2V is Positive definite, then 

Fp>O, h~-Fp-EFpp<oEs>o, Fp + 2Fpp(V u)2 > 0 

In the linear approximation with respect to 4, the condition (4) can be 
written as 

(hu, ~2)= 2to(g,~l) (7) 

where 

g ---- -d iv(FrpsV u) + u(Fp - ~o 2sFpp + sFps ) 

From (7), using Schwartz's inequality, we get 

(~:, h~:) > 4~2(g, ~02(u, h u ) - '  

From (6) and (8) we have the estimate 

where 

/~r =/~1r + 4~ 2g( g; ~0( u, hu)- l 

(8) 

(9) 

Now we shall find the conditions for 14/to be positive definite with 
respect to the metric p, which can be enlarged by including I1~111. Note that 
due to the field equations we have /~2U=0 and, therefore, according to 
Courant 's theorem about the posit i~ty of the first eigenfunction (Courant 
and Hilbert, 1953), the spectrum of L 2 will be positive since u >0.  The zero 
mode is excluded here according to the definition of p, because for 
~ =  u~ U, 0[u]=0. 
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Further, for the spectrum o f / ~  to be positive, it is necessary that s 
have not more than one negative eigenvalue, because in the opposite case 
(g, ~1) = 0 can always be attained for (~1,/~1~1) < O. 

, Let )~(to) be the first eigenvalue of K. According to Theorem 1, )~(0) is 
always negative, Let us find the critical frequency too for which X(to0)= 0 
and which defines the boundary of the domain of Q stability to > to 0, if 
X,~ > 0 (owing to the symmetry to--~- to, it is sufficient to consider to > 0). 
As sgn min~=,82V=sgn(to-%),  u(too) is the saddle point of V with the 
curve of descent u(co). Thus, for o~ = too, mJnp=e6 2V= minp=r(~ l , /~1)  = 0 and 
is achieved when ~1 -- u,o. Hence/(u,o = 0, which along with Lzu--0 leads to 
the following equation for too (Zastavenko, 1965; Rybakov, 1966b): 

O_O - dt o=A(tof d'xF s)--o (lo) 

If to > ~00, then (u,~,/~u,~) > 0 or, (200,(0o,0- (u, hu))> 0, whence with the help 
of (10) we get the inequality to determine the domain of O stability 
(Vakhitov and Kolokolov, 1973; Friedberg et al., 1976): 

Q ~ < 0  (11) 

Note, once again, that the zero modes of the type ~i = CiOiu are excluded 
according tO the definition of the metric p. 

Thus we come to the following conclusion. 

Theorem 3. Nonnodat regular solutions (2), in the model (1), are Q 
stable and the domain of Q stability is determined by the inequal- 
ity (11), if the following conditions hold: (a) 2~o,>_-0; (b) the 
operator/~1 has only one negative eigenvalue. 

Let us see some examples. 
1) F = p + s - s n / n .  
In this case (Jidkov and Shirikov, 1964), for 1 <n  <3  and Ito[ < 1, there 

exist spherically symmetric regular solutions (2). Changing the variables 

Ixl = p ( 1 - t o = ) ' / =  , u=v(l_to=)'/2(n-o (12) 

we get 

Qo(to) -- const to(1 - to2)~573n)/2{n- 1) 

Therefore (11) is fulfilled only if n < 5 / 3 .  Let n = 3 / 2 .  This case was 
investigated in (Synge, 1961). The energy of the nonnodal solution is 
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E0=4~r(1 +2o:2)(1-ta2)x/23.4744... Operator /s has the following struc- 
ture: 

/~= s +4~2pu, s = --A--~2+ 1--2u 

Pu being the projector on u/llu]l. Using (12), the equation/(qJ=X~k can be 
written in the form 

[ - A+ 1 -- 2v(o) + c~(o~) Pv] g, =X~b (13) 

where a(o 0 = 4w2(1 - ~2) - 1, ~ = •(1 - c02)- 1. Differentiating (13) with re- 
spect to a, we get X~ =0k, Pv~k) and, therefore, X,~ t> 0, that replaces the 
condition (a) of Theorem 3 since sgnX= sgnX. 

Now let us verify that the operator L~ has only one negative eigen- 
value. As from (12), L 1 =(1--w2)(--A+ 1--2v), consider the equation 

[ - A + l - 2v(o) ]X= vX (14) 

Separating the angular variables in (14): Xlk=Rl(O) Ylk, we come to the 
conclusion that for l =  1, R l = d v / d  0 and v=0.  Further, as v(o) is mono- 
tonic (Coleman et al., 1978), R 1 has no internal zeros and hence, according 
to Courant's theorem, v = 0 is the lowest eigenvalue for 14=0. Therefore v is 
negative only for s states. According to Sturm's theorem (Tricomi, 1961) 
the number of s states with v < 0 is equal to the number of internal zeros of 
the solution to the equation 

[ - d 2 / d o  2 + 1 - 2v(0) ] Y(O) = 0 (15) 

if y(0)=0,  y ' (0)= 1. Numerical calculations show that y(p) has only one 
internal zero for p ~  1.32. Thus we see that all conditions of Theorem 3 are 
fulfilled. The domain of Q stability is 1 > 1~01 > 2-1/2. 

2) F = p + s ( m 2 +  1 - l n s ) ;  m =const. 
The model, introduced in (Bialynicki-Birula and Mycielski, 1975), has 

the simple solution of the type (2): 

u = e x P � 8 9  r =  ]x], Vto~R 

with the energy Eo-~l ' ir3/2(l+2to2)exp(3+m2-o~2) and charge Q0(w)= 
consttoexp(-to2). So, the condition (11) is satisfied for Ir > 2  -1/2. Opera- 
tor K has the form 

K =  -- A + r2 -- 5 + 4w2Pu 
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Its spectrum can be found immediately: 

2 ~ o = - 2 + 4 ~  2, 2M=2(n-1) ,  n = l , 2 , . . .  

Thus the domain of Q stability is Iwl > 2  -1/2 
3) F = p  + m2s + s(~lns) 4/3 + 2f~dx(31nx) 1/3. 
The model has the solution (2) of the form u = e x p ( - r 3 / 3 ) ;  ]~1 = m, 

with the energy E 0 = 4~r[(m2/2) + F(�89 Opera to r / (  has the form 

1s --A + r4 - -8r+4 / r2  +4m2pu 

Differentiating the equation/(~p = ~ p  with respect t o  m 2, we get 

a ~ / a m  2 = 4(~,, Pu~p) >i 0 

It can directly be checked that ~ = r2u is the eigenfunction o f /~  for ~ = 0, if 

mE=rag=- 2s - 2r (~)  

Therefore, the domain of Q stability is m2>m 2 if the operator s 
= K(m = 0) has only one negative eigenvalue. The verification of this 
point is the same as in example 1). The equation analogous to (15) is 

( -- d2/dr2q - r 4 -  8r+4/ r2 )y  = 0  

Its solution with the property y ( 0 ) = 0  is expressed through a confluent 
hypergeometric function: 

y = r ~ 1 8 9  o = 1 [ ( 1 7 ) 1 / 2 -  1] 

and has only one internal zero. 
Concluding, it should be noted that the scalar field models considered 

here have just the illustrative character. However, in more realistic models 
dealing with vector and spinor fields, the solutions of the type (2) are 
found to be unstable (Rybakov, 1965, 1966a). From this point of view the 
models with topological charges are perspective (Skyrme, 1962). 
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